Loading…

Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz

This paper shows a systematic study of the 500 kHz frequency ultrasound efficiency on the microbial inactivation as a function of ultrasonic power delivered into the bacterial suspension. The inactivation of Escherichia coli IAM 12058, a Gram-negative bacterium and Streptococcus mutans JCM 5175, a G...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonics sonochemistry 2009-06, Vol.16 (5), p.655-659
Main Authors: Koda, Shinobu, Miyamoto, Masaki, Toma, Maricela, Matsuoka, Tatsuro, Maebayashi, Masahiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper shows a systematic study of the 500 kHz frequency ultrasound efficiency on the microbial inactivation as a function of ultrasonic power delivered into the bacterial suspension. The inactivation of Escherichia coli IAM 12058, a Gram-negative bacterium and Streptococcus mutans JCM 5175, a Gram-positive bacterium is enhanced by increasing the ultrasonic power in the range of 1.7–12.4 W and the logarithm of survival ratio decreases linearly with irradiation time, except for E. coli sonicated with the highest power level. The rate constants were estimated in the linear region of the plots representing survival ratio logarithm vs. sonication time. A better understanding of the inactivation process at 500 kHz could be gained by suppressing the chemical effects with a radical scavenger. We find out that the rate constants increase with the ultrasonic power delivered into the solution and dramatically decrease by the addition of t-butanol as a radical scavenger to the bacterial suspension. For comparison, experiments were carried out at a low frequency level of 20 kHz. It was found out that for the same ultrasonic power delivered into the bacterial suspension, the inactivation was slightly enhanced at 500 kHz frequency. The examinations of bacterium performed with a TEM revealed lethal damages arising from the interaction of bacterial cells with the cavitational bubbles. A significant amount of empty cell envelopes as well as their cytoplasmatic content was detected. Thus, based on these new data, the mechanism of bacterial inactivation by ultrasounds at high frequency is discussed here.
ISSN:1350-4177
1873-2828
DOI:10.1016/j.ultsonch.2009.02.003