Loading…
Search for basic relationships between “molecular size” and “chemical structure” of aquatic natural organic matter—Answers from 13C and 15N CPMAS NMR spectroscopy
To investigate the structural composition of natural organic matter (NOM), a 3-step micro- and ultrafiltration procedure was applied to 3 surface waters from southern Germany, and fractions from all filtration steps were collected. The NOM was characterized using solid-state 13C and 15N nuclear magn...
Saved in:
Published in: | Water research (Oxford) 2008-02, Vol.42 (4), p.1051-1060 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the structural composition of natural organic matter (NOM), a 3-step micro- and ultrafiltration procedure was applied to 3 surface waters from southern Germany, and fractions from all filtration steps were collected. The NOM was characterized using solid-state
13C and
15N nuclear magnetic resonance (NMR) techniques. Routine integration of the
13C NMR spectra and extended data analysis procedures were carried out for a quantitative comparison of the structural components as well as for the elucidation of structural fractionation patterns. A common feature of the large molecular size fractions was the predominance of polysaccharide material, with the dissolved high molecular weight organics being mostly enriched in N-acetylated polysaccharides derived from microbial leftovers. Aromatic structures like lignin and tannin derivatives were most abundant in the intermediate size fraction. All membranes were found to be highly permeable for branched aliphatics, i.e. isoprenoids. Fouling layers of the ultrafiltration membrane were significantly enriched in long-chain aliphatics (lipids). Biofouling was not observed on any of the membranes. Overall, a strong interdependence between the chemical structural characteristics of NOM components and their size, shape, or interaction characteristics could be shown. The results provide the basis for a better understanding of water process technologies as treatment effectiveness is strongly dependent on the chemical composition and the “size” distribution of NOM. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2007.09.028 |