Loading…
Mercer's Theorem and Fredholm resolvents
Multivariate versions of Mercer's Theorem and the usual expansions of the resolvent and Fredholm determinant are shown to hold for an n × n symmetric kernel N(x, y) with arbitrary domain in Rp under weakened continuity conditions. Further, the resolvent and determinant of N(x, y) − a(x)b(y) are...
Saved in:
Published in: | Bulletin of the Australian Mathematical Society 1974-12, Vol.11 (3), p.373-380 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multivariate versions of Mercer's Theorem and the usual expansions of the resolvent and Fredholm determinant are shown to hold for an n × n symmetric kernel N(x, y) with arbitrary domain in Rp under weakened continuity conditions. Further, the resolvent and determinant of N(x, y) − a(x)b(y) are given in terms of those of N(x, y). |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700044002 |