Loading…

Unique factorization in Cayley arithmetics and cryptology

Let be the classical Cayley algebra defined over the reals with basis where gives a quaternion algebra ℋ4 with i0 = 1, i1i2i3 = −1, i1i4 = i5, i2i4 = i6 and i3i4 = i7. The multiplication table of the imaginary basic units follows:

Saved in:
Bibliographic Details
Published in:Glasgow mathematical journal 1991-09, Vol.33 (3), p.267-273
Main Author: Lamont, P. J. C.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let be the classical Cayley algebra defined over the reals with basis where gives a quaternion algebra ℋ4 with i0 = 1, i1i2i3 = −1, i1i4 = i5, i2i4 = i6 and i3i4 = i7. The multiplication table of the imaginary basic units follows:
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089500008326