Loading…
Unique factorization in Cayley arithmetics and cryptology
Let be the classical Cayley algebra defined over the reals with basis where gives a quaternion algebra ℋ4 with i0 = 1, i1i2i3 = −1, i1i4 = i5, i2i4 = i6 and i3i4 = i7. The multiplication table of the imaginary basic units follows:
Saved in:
Published in: | Glasgow mathematical journal 1991-09, Vol.33 (3), p.267-273 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let be the classical Cayley algebra defined over the reals with basis where gives a quaternion algebra ℋ4 with i0 = 1, i1i2i3 = −1, i1i4 = i5, i2i4 = i6 and i3i4 = i7. The multiplication table of the imaginary basic units follows: |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089500008326 |