Loading…
A note on Hamilton's principle for perfect fluids
A derivation is given of the Eulerian equations of motion directly from the Lagrangian formulation of Hamilton's principle. The circulation round a circuit of material particles of uniform entropy appears as a constant of the motion associated with the indistinguishability of fluid elements wit...
Saved in:
Published in: | Journal of fluid mechanics 1970-10, Vol.44 (1), p.19-31 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A derivation is given of the Eulerian equations of motion directly from the Lagrangian formulation of Hamilton's principle. The circulation round a circuit of material particles of uniform entropy appears as a constant of the motion associated with the indistinguishability of fluid elements with equal density, entropy and velocity. A discussion is given of the Lin constraint, and it is pointed out that, for a barotropic fluid, the variational principle recently suggested by Seliger & Whitham does not permit velocity fields in which the vortex lines are knotted. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112070001660 |