Loading…
Geometry of self-propulsion at low Reynolds number
The problem of swimming at low Reynolds number is formulated in terms of a gauge field on the space of shapes. Effective methods for computing this field, by solving a linear boundary-value problem, are described. We employ conformal-mapping techniques to calculate swimming motions for cylinders wit...
Saved in:
Published in: | Journal of fluid mechanics 1989-01, Vol.198 (1), p.557-585 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of swimming at low Reynolds number is formulated in terms of a gauge field on the space of shapes. Effective methods for computing this field, by solving a linear boundary-value problem, are described. We employ conformal-mapping techniques to calculate swimming motions for cylinders with a variety of crosssections. We also determine the net translationl motion due to arbitrary infinitesimal deformations of a sphere. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S002211208900025X |