Loading…

Differential Metabolism of Metribuzin by Downy Brome (Bromus tectorum) and Winter Wheat (Triticum aestivum)

At both 15 and 25 C, following a 24-h root absorption period, absorbed 14C-metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] was metabolized approximately 30% more rapidly to water-soluble and terminal fiber metabolites by winter wheat (Triticum aestivum L.) than by d...

Full description

Saved in:
Bibliographic Details
Published in:Weed science 1987-11, Vol.35 (6), p.741-745
Main Authors: Devlin, Daniel L., Gealy, David R., Morrow, Larry A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At both 15 and 25 C, following a 24-h root absorption period, absorbed 14C-metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] was metabolized approximately 30% more rapidly to water-soluble and terminal fiber metabolites by winter wheat (Triticum aestivum L.) than by downy brome (Bromus tectorum L. # BROTE). Both species metabolized a greater proportion of metribuzin in leaf sheaths and roots than in the leaf blades. This was attributed to the increased incorporation of metribuzin into fiber. After an initial leaf extraction, metribuzin and the metabolites deaminated metribuzin (DA), deaminated diketo metribuzin (DADK), and diketo metribuzin (DK) partitioned into a chloroform fraction and five unidentified water-soluble metabolites into an aqueous fraction. At both 15 and 25 C, downy brome absorbed approximately three times more metribuzin per fresh weight than did winter wheat. The mechanism of differential tolerance of downy brome and winter wheat to metribuzin was attributed to the ability of winter wheat to metabolize metribuzin more rapidly and absorb less metribuzin than downy brome.
ISSN:0043-1745
1550-2759
DOI:10.1017/S004317450007925X