Loading…
Local product structure for group actions
A differentiable G-space is introduced, for a Lie group G, into which every countably separated Borel G-space can be imbedded. The imbedding can be a continuous map if the space is a separable metric space. Such a G-space is called a universal G-space. This universal G-space has a local product stru...
Saved in:
Published in: | Ergodic theory and dynamical systems 1991-03, Vol.11 (1), p.209-217 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A differentiable G-space is introduced, for a Lie group G, into which every countably separated Borel G-space can be imbedded. The imbedding can be a continuous map if the space is a separable metric space. Such a G-space is called a universal G-space. This universal G-space has a local product structure for the action of G. That structure is inherited by invariant subspaces, giving a local product structure on general G-spaces. This information is used to prove that G-spaces are stratified by the subsets consisting of points whose orbits have the same dimension, to prove that G-spaces with stabilizers of constant dimension are foliated, to give a short proof that closed subgroups of Lie groups are Lie groups, to give a new proof and a stronger version of the Ambrose—Kakutani Theorem and to give a new proof of the existence of near-slices at points having compact stabilizers and hence of the existence of slices for Cartan G-spaces. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385700006088 |