Loading…

On the asymptotic normality of Hill's estimator

Let X, X1, X2, …, be independent random variables with a common distribution function F(x) = P {X ≤ x}, x∈ℝ, and for each n∈ℕ, let X1, n ≤ … ≤ Xn, n denote the order statistics pertaining to the sample X1, …, Xn. We assume that 1–F(x) = x−1/cl(x), 0 < x < ∞, where l is some function slowly var...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical proceedings of the Cambridge Philosophical Society 1995-09, Vol.118 (2), p.375-382
Main Authors: Csörgő, Sándor, Viharos, László
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let X, X1, X2, …, be independent random variables with a common distribution function F(x) = P {X ≤ x}, x∈ℝ, and for each n∈ℕ, let X1, n ≤ … ≤ Xn, n denote the order statistics pertaining to the sample X1, …, Xn. We assume that 1–F(x) = x−1/cl(x), 0 < x < ∞, where l is some function slowly varying at infinity and c > 0 is any fixed number. The class of all such distribution functions will be denoted by .
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004100073710