Loading…

Operators in finite distributive subspace lattices, I

The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example const...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical proceedings of the Cambridge Philosophical Society 1993-01, Vol.113 (1), p.141-146
Main Author: Spanoudakis, N. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example constructed is on a specific Hilbert space realization of the free distributive lattice on three generators and the operator which fails the above property has rank two.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004100075824