Loading…
Operators in finite distributive subspace lattices, I
The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example const...
Saved in:
Published in: | Mathematical proceedings of the Cambridge Philosophical Society 1993-01, Vol.113 (1), p.141-146 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this paper is to settle in the negative an open problem in operator theory, which asks whether in a finite distributive subspace lattice ℒ on a Hilbert space, every finite rank operator of Alg ℒ can be written as a finite sum of rank one operators from Alg ℒ. The counter-example constructed is on a specific Hilbert space realization of the free distributive lattice on three generators and the operator which fails the above property has rank two. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004100075824 |