Loading…
Quantitative continuation from a measurable set of solutions of elliptic equations
Consider an open bounded connected set Ω in Rn and a Lebesgue measurable set E ⊂⊂ Ω of positive measure. Let u be a solution of the strictly elliptic equation Di (aij Dj u) = 0 in Ω, where aij ∈ C0, 1 (Ω̄) and {aij} is a symmetric matrix. Assume that |u| ≤ ε in E. We quantify the propagation of smal...
Saved in:
Published in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2000-08, Vol.130 (4), p.909-923 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Consider an open bounded connected set Ω in Rn and a Lebesgue measurable set E ⊂⊂ Ω of positive measure. Let u be a solution of the strictly elliptic equation Di (aij Dj u) = 0 in Ω, where aij ∈ C0, 1 (Ω̄) and {aij} is a symmetric matrix. Assume that |u| ≤ ε in E. We quantify the propagation of smallness of u in Ω. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210500000494 |