Loading…

Simple Matroids with Bounded Cocircuit Size

We examine the specialization to simple matroids of certain problems in extremal matroid theory that are concerned with bounded cocircuit size. Assume that each cocircuit of a simple matroid M has at most d elements. We show that if M has rank 3, then M has at most d + [lfloor ]√d[rfloor ] + 1 point...

Full description

Saved in:
Bibliographic Details
Published in:Combinatorics, probability & computing probability & computing, 2000-09, Vol.9 (5), p.407-419, Article S0963548300004429
Main Authors: BONIN, JOSEPH E., REID, TALMAGE JAMES
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We examine the specialization to simple matroids of certain problems in extremal matroid theory that are concerned with bounded cocircuit size. Assume that each cocircuit of a simple matroid M has at most d elements. We show that if M has rank 3, then M has at most d + [lfloor ]√d[rfloor ] + 1 points, and we classify the rank-3 simple matroids M that have exactly d + [lfloor ]√d[rfloor ] points. We show that if M is a connected matroid of rank 4 and d is q3 with q > 1, then M has at most q3 + q2 + q + 1 points; this upper bound is strict unless q is a prime power, in which case the only such matroid with exactly q3 + q2 + q + 1 points is the projective geometry PG(3, q). We also show that if d is q4 for a positive integer q and if M has rank 5 and is vertically 5-connected, then M has at most q4 + q3 + q2 + q + 1 points; this upper bound is strict unless q is a prime power, in which case PG(4, q) is the only such matroid that attains this bound.
ISSN:0963-5483
1469-2163
DOI:10.1017/S0963548300004429