Loading…

Flow control over an airfoil using virtual Gurney flaps

Flow control over a NACA 0012 airfoil is carried out using a dielectric barrier discharge (DBD) plasma actuator at the Reynolds number of 20 000. Here, the plasma actuator is placed over the pressure (lower) side of the airfoil near the trailing edge, which produces a wall jet against the free strea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2015-03, Vol.767, p.595-626
Main Authors: Feng, Li-Hao, Choi, Kwing-So, Wang, Jin-Jun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flow control over a NACA 0012 airfoil is carried out using a dielectric barrier discharge (DBD) plasma actuator at the Reynolds number of 20 000. Here, the plasma actuator is placed over the pressure (lower) side of the airfoil near the trailing edge, which produces a wall jet against the free stream. This reverse flow creates a quasi-steady recirculation region, reducing the velocity over the pressure side of the airfoil. On the other hand, the air over the suction (upper) side of the airfoil is drawn by the recirculation, increasing its velocity. Measured phase-averaged vorticity and velocity fields also indicate that the recirculation region created by the plasma actuator over the pressure surface modifies the near-wake dynamics. These flow modifications around the airfoil lead to an increase in the lift coefficient, which is similar to the effect of a mechanical Gurney flap. This configuration of DBD plasma actuators, which is investigated for the first time in this study, is therefore called a virtual Gurney flap. The purpose of this investigation is to understand the mechanism of lift enhancement by virtual Gurney flaps by carefully studying the global flow behaviour over the airfoil. First, the recirculation region draws the air from the suction surface around the trailing edge. The upper shear layer then interacts with the opposite-signed shear layer from the pressure surface, creating a stronger vortex shedding from the airfoil. Secondly, the recirculation region created by a DBD plasma actuator over the pressure surface displaces the positive shear layer away from the airfoil, thereby shifting the near-wake region downwards. The virtual Gurney flap also changes the dynamics of laminar separation bubbles and associated vortical structures by accelerating laminar-to-turbulent transition through the Kelvin–Helmholtz instability mechanism. In particular, the separation point and the start of transition are advanced. The reattachment point also moves upstream with plasma control, although it is slightly delayed at a large angle of attack.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2015.22