Loading…

Localized Heating Tailors Nucleation for Reproducible Growth of Thin Halide Perovskite Single Crystals

Halide perovskites (HaPs) are functional semiconductors that can be prepared in a simple, near-room-temperature process. With thin polycrystalline HaP films, excellent solar cells, light-emitting diodes (LEDs), and (also as single crystals) high-energy radiation detectors have been demonstrated. The...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2022-12, Vol.22 (12), p.7160-7167
Main Authors: Kumar, Sujit, Rukban, Alexandra, Sinisi, Julia, Damle, Vinayaka H., Cahen, David
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Halide perovskites (HaPs) are functional semiconductors that can be prepared in a simple, near-room-temperature process. With thin polycrystalline HaP films, excellent solar cells, light-emitting diodes (LEDs), and (also as single crystals) high-energy radiation detectors have been demonstrated. The very low single-crystal defect densities make HaP thin single crystals (TSCs), instead of polycrystalline HaP films an attractive option, to boost device performances and for fundamental research. However, growing TSCs is challenging primarily because of random multiple nucleations, which, in the often-used space-confined geometry, is favored at the substrate boundaries, where loss of organo-amines and solvents occurs. We show that fewer and better-quality thin crystals nucleate and grow reproducibly away from the substrate edges in the substrate center, if we localize the heating (needed for inverse-temperature crystallization, the preferred crystal growth method) there. Using a further finding of ours that lowers the crystallization temperature, TSCs of methylammonium lead bromide (MAPbBr3), the HaP we focus on here, grow also directly on flexible substrates. 1H NMR measurements show how the observed lower crystallization temperature results from slow humidity-mediated chemical changes in the HaP precursor solution during its storage.
ISSN:1528-7483
1528-7505
DOI:10.1021/acs.cgd.2c00833