Loading…
Engineering the Surface Chemistry of Colloidal InP Quantum Dots for Charge Transport
Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral...
Saved in:
Published in: | Chemistry of materials 2022-09, Vol.34 (18), p.8306-8315 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colloidal InP quantum dots (QDs) have emerged as potential candidates for constructing nontoxic QD-based optoelectronic devices. However, charge transport in InP QD thin-film assemblies has been limitedly explored. Herein, we report the synthesis of ∼8 nm edge length (∼6.5 nm in height), tetrahedral InP QDs and study charge transport in thin films using the platform of the field-effect transistor (FET). We design a hybrid ligand-exchange strategy that combines solution-based exchange with S2– and solid-state exchange with N3 – to enhance interdot coupling and control the n-doping of InP QD films. Further modifying the QD surface with thin, thermally evaporated Se overlayers yields FETs with an average electron mobility of 0.45 cm2 V–1 s–1, ∼10 times that of previously reported devices, and a higher on–off current ratio of 103–104. Analytical measurements suggest lower trap-state densities and longer carrier lifetimes in the Se-modified InP QD films, giving rise to a four-time longer carrier diffusion length. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.2c01840 |