Loading…
Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropore Volumes Including New Molecular Sieve CIT-13
A series of monoquaternary and diquarternary benzyl-imidazolium derivatives are prepared and used as organic structure direction agents (OSDAs) in germanosilicate syntheses. The goal of this work is to create new multidimensional large pore zeolites. For the OSDA made and tested, we looked for relat...
Saved in:
Published in: | Chemistry of materials 2016-04, Vol.28 (7), p.2158-2164 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of monoquaternary and diquarternary benzyl-imidazolium derivatives are prepared and used as organic structure direction agents (OSDAs) in germanosilicate syntheses. The goal of this work is to create new multidimensional large pore zeolites. For the OSDA made and tested, we looked for relationships based upon stereochemistry from the benzyl ring as part of each structure. Several known molecular sieves with the *BEA, BEC, IWS, or LTA topologies are obtained. Molecular modeling is carried out with the goal of understanding: (a) the product selectivity correlation with the OSDA and the zeolite obtained, and (b) why differential rates of crystallization are observed for isomers that lead to different zeolite products. Additionally, a new molecular sieve denoted CIT-13 is prepared and shown to possess intersecting 14- and 10-membered ring pores, which gives confidence to the soundness of this approach for OSDA construction to yield new multidimensional large pore zeolites. CIT-13 is the first molecular sieve to have this combination of pore sizes. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.6b00031 |