Loading…

Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity

Mesoporous silica nanoparticles (MSNs) are considered as one of the most promising nanovectors for controlled drug delivery. For the design of ideal drug nanocarriers, several factors have to be taken into account, such as size and surface chemistry. Here, we report how MSNs surface functionalizatio...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2016-06, Vol.28 (12), p.4243-4258
Main Authors: Bouchoucha, Meryem, Côté, Marie-France, C.-Gaudreault, René, Fortin, Marc-André, Kleitz, Freddy
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mesoporous silica nanoparticles (MSNs) are considered as one of the most promising nanovectors for controlled drug delivery. For the design of ideal drug nanocarriers, several factors have to be taken into account, such as size and surface chemistry. Here, we report how MSNs surface functionalization and particle size critically affect the drug release performances and therapeutic capabilities. We illustrate the size effect of these functionalized MSNs on in vitro, intracellular, and in vivo drug release efficiency, as well as on nanoparticle and drug diffusion into the targeted tissues (tumor). For this, dispersible MSNs with different particle sizes (from 500 down to 45 nm), similar physicochemical properties (e.g., structural and textural properties), and high colloidal stability (even in saline conditions), were synthesized. Their surface was specifically functionalized with a phosphonate-silane according to a novel postgrafting strategy, for better control over loading and release of positively charged drugs. An efficient particle-size-dependent and pH-dependent release of the loaded drug (i.e., doxorubicin) was achieved in physiological conditions with phosphonated-MSNs compared to pure-MSNs. The cellular uptake efficiency is much higher with the smallest phosphonated-nanoparticles (45 nm). Furthermore, doxorubicin is efficiently released from the nanoparticles into the intracellular compartments, and the drug reaches the nucleus in a time- and particle size-dependent manner. Intratumoral diffusion of the developed nanoparticles, as well as the drug release and its diffusion into the tumor matrix, is clearly enhanced with the smallest phosphonated-nanoparticles (45 nm), leading ultimately to a superior cell and tumor growth inhibition.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b00877