Loading…

Forming a Metal-Free Oxidatively Coupled Agent, Bicarbazole, as a Defect Passivation for HTM and an Interfacial Layer in a p–i–n Perovskite Solar Cell Exhibits Nearly 20% Efficiency

In this study, we synthesized three simple and inexpensive (34–120 USD/g) 3,3′-bicarbazole-based hole transporting materials (BC-HTMs; NP-BC, NBP-BC and PNP-BC) through a metal-free oxidative coupling, in excellent yields (≥95%). These bicarbazoles contain phenylene or biphenylene substituents on th...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2020-01, Vol.32 (1), p.127-138
Main Authors: Maddala, Sudhakar, Chung, Chung-Lin, Wang, Shin-Yu, Kollimalayan, Kalidass, Hsu, Hsiang-Lin, Venkatakrishnan, Parthasarathy, Chen, Chih-Ping, Chang, Yuan Jay
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we synthesized three simple and inexpensive (34–120 USD/g) 3,3′-bicarbazole-based hole transporting materials (BC-HTMs; NP-BC, NBP-BC and PNP-BC) through a metal-free oxidative coupling, in excellent yields (≥95%). These bicarbazoles contain phenylene or biphenylene substituents on the carbazole N atom, with extended π-conjugation achieved through phenylene units at the 6,6′-positions of the bicarbazole. When using NBP-BC as a dopant-free HTM in a p–i–n perovskite solar cell (PSC), we achieved a power conversion efficiency (PCEs) of 12.22 ± 0.54% under AM 1.5G conditions (100 mW cm–2); this PCE was comparable to that obtained when using PEDOT:PSS as the HTM (11.23 ± 1.02%). BC-HTMs showed the large grain size (μm) of perovskite than PEDOT:PSS-based, due to defect passivation on indium tin oxide (ITO) substrate and good hydrophobicity. Furthermore, we realized highly efficient and stable PSCs when using the p–i–n device structure ITO/NiO x /NP-BC/perovskite/PC61BM/BCP/Ag. The bifacial defect passivation effect of the interfacial layer improved the grain size of the perovskite layer and also enhanced the performance; the best performance of the NiO x /NP-BC device was characterized by a short-circuit current density (J sc) of 22.38 mA cm–2, an open-circuit voltage (V oc) of 1.09 V, and a fill factor (FF) of 79.9%, corresponding to an overall PCE of almost 20%. This device structure has competitive potential because its performance is comparable to that of the record-high-efficiency PSCs. Under an Ar atmosphere, the PCE of the NiO x /NP-BC PSC device decayed by only 4.55% after 168 h; it retained 90.80% of its original PCE after 1000 h. A morphological study revealed that the films of the BC-HTMs were indeed smooth and hydrophobic and that the perovskite films spin-coated upon them were uniform and featured large grains (micrometer scale). Time-resolved photoluminescence (TRPL) spectra of the perovskite films suggested that the hole extraction capabilities of the NiO x /BC-HTMs were better than that of the bare NiO x . The superior film morphologies of the NiO x /BC-HTMs were responsible for the performances of their devices being comparable to those of bare NiO x -based PSCs.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.9b02720