Loading…
Improving Electrochemical Oxidation/Reduction Kinetics in Single-Component Solid Oxide Cells through Synergistic A‑Site Defects and Anion Doping
Solid oxide fuel/electrolysis cells (SOFCs/SOECs) have emerged as promising technologies for reversibly converting chemical and electrical energy. Here, we propose a synergistic approach involving the introduction of A-site defects and anion doping in the perovskite La0.6Sr0.4Co0.2Fe0.8O3‑δ (LSCF) o...
Saved in:
Published in: | Energy & fuels 2023-10, Vol.37 (20), p.16050-16061 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Solid oxide fuel/electrolysis cells (SOFCs/SOECs) have emerged as promising technologies for reversibly converting chemical and electrical energy. Here, we propose a synergistic approach involving the introduction of A-site defects and anion doping in the perovskite La0.6Sr0.4Co0.2Fe0.8O3‑δ (LSCF) oxide to enhance its electrochemical oxidation/reduction kinetics as an electrode material in single-component SOFCs/SOECs. By creating an A-site deficient and F-doped oxyfluoride, designated as (La0.6Sr0.4)0.95Co0.2Fe0.8F0.1O2.9‑δ (F-(LS)0.95CF), we effectively lower the valence state of both Co and Fe elements, leading to a higher concentration of oxygen vacancies. This synergistic approach yields a remarkable approximately 5-fold increase in the oxygen surface exchange coefficient (k chem) and a 50% increase in the bulk diffusion coefficient (D chem) at 700 °C, when compared with LSCF. The resulting F-(LS)0.95CF-based single cell demonstrates approximately a 100% higher maximum power density for SOFC operation and a 60% higher current density at 1.3 V for SOEC operation. These improvements are further supported by lower polarization resistances observed in symmetrical cells with F-(LS)0.95CF. Furthermore, detailed investigations into the reaction kinetics reveal distinctive behaviors for the hydrogen oxidation reaction when comparing LSCF to F-(LS)0.95CF as the electrode material. Specifically, for LSCF, the rate-limiting step is the adsorption and dissociation of H2, while for F-(LS)0.95CF, it primarily involves a charge-transfer reaction. Conversely, for the oxygen reduction reaction, regardless of the electrode material being LSCF or F-(LS)0.95CF, the rate-limiting step consistently involves the reduction of oxygen atoms to O–. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/acs.energyfuels.3c02794 |