Loading…
Application of Eddy Dissipation Concept for Modeling Biomass Combustion, Part 2: Gas-Phase Combustion Modeling of a Small-Scale Fixed Bed Furnace
Small-scale grate-firing biomass furnaces suffer from high levels of pollutant emissions caused mainly by a low level of air/fuel mixing and a short residence time for combustion as a result of their small volume. Reliable gas-phase combustion modeling is key for improving the design of these system...
Saved in:
Published in: | Energy & fuels 2016-12, Vol.30 (12), p.10800-10808 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Small-scale grate-firing biomass furnaces suffer from high levels of pollutant emissions caused mainly by a low level of air/fuel mixing and a short residence time for combustion as a result of their small volume. Reliable gas-phase combustion modeling is key for improving the design of these systems. The present work describes a computational fluid dynamics study of biomass combustion using the modified eddy dissipation concept (EDC) model. Part 1 (10.1021/acs.energyfuels.6b01947) of this study focused on examining the main challenges of the EDC model regarding its application for modeling weakly turbulent and slow-chemistry reacting flows. In addition, a sensitivity analysis was carried out on the constants of the model for modeling non-premixed combustion at weakly and highly turbulent reacting flow conditions. Using the conclusions of the analysis of part 1 (10.1021/acs.energyfuels.6b01947), gas-phase combustion of a small lab-scale grate-firing biomass furnace is simulated in the present paper (part 2). The results revealed that the modified EDC model produced reasonable predictions of the temperature and gas emissions. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/acs.energyfuels.6b01948 |