Loading…

Thermal and Mutual Diffusivity of Binary Mixtures of n‑Dodecane and n‑Tetracontane with Carbon Monoxide, Hydrogen, and Water from Dynamic Light Scattering (DLS)

The present work represents a continuation of a former study where the simultaneous determination of thermal and mutual diffusivity for binary mixtures of n-octacosane (n-C28H58) with dissolved carbon monoxide (CO), hydrogen (H2), or water (H2O) by using dynamic light scattering (DLS) was demonstrat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical and engineering data 2016-03, Vol.61 (3), p.1333-1340
Main Authors: Heller, Andreas, Fleys, Matthieu S. H, Chen, Jiaqi, van der Laan, Gerard P, Rausch, Michael H, Fröba, Andreas P
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present work represents a continuation of a former study where the simultaneous determination of thermal and mutual diffusivity for binary mixtures of n-octacosane (n-C28H58) with dissolved carbon monoxide (CO), hydrogen (H2), or water (H2O) by using dynamic light scattering (DLS) was demonstrated. Here, the same properties are studied for binary mixtures of the n-alkanes n-dodecane (n-C12H26) or n-tetracontane (n-C40H82) with dissolved CO, H2, or H2O. In most cases, expanded relative uncertainties (k = 2) ranging from 2 to 12 % and 3 to 25 % for the thermal and mutual diffusivities could be obtained. The experimental mutual diffusivities for mixtures of n-C12H26 with CO, H2, or H2O measured at temperatures from 398 to 524 K and pressures from 0.2 to 4.2 MPa at saturation conditions agree well with molecular dynamics (MD) simulations using atomistic models and with experimental data from literature. Binary mixtures of n-C40H82 with dissolved CO, H2, or H2O were investigated in a temperature range from 447 to 498 K and pressures from 0.3 to 3.9 MPa. For mixtures with n-C40H82, the accessible temperature range was limited due to a change in the optical characteristics of the sample at elevated temperatures where DLS measurements suffered from absorption effects and particle scattering.
ISSN:0021-9568
1520-5134
DOI:10.1021/acs.jced.5b00986