Loading…

Ethylene and Water Co-Adsorption on Ag/SSZ-13 Zeolites: A Theoretical Study

Zeolites are capable of selectively adsorbing molecules and therefore are applicable to chemical separation challenges. In this work, two probe molecules, ethylene (C2H4) and water (H2O) are modeled for their adsorption behavior in silver (Ag) ion-exchanged SSZ-13 zeolite (Si/Al = 11). A microkineti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2020-04, Vol.124 (13), p.7295-7306
Main Authors: Horvatits, Caitlin, Li, Dan, Dupuis, Michel, Kyriakidou, Eleni A, Walker, Eric A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zeolites are capable of selectively adsorbing molecules and therefore are applicable to chemical separation challenges. In this work, two probe molecules, ethylene (C2H4) and water (H2O) are modeled for their adsorption behavior in silver (Ag) ion-exchanged SSZ-13 zeolite (Si/Al = 11). A microkinetic model was constructed to include adsorbate–adsorbate effects due to multiple adsorption on individual active sites. As a basis for comparison, adsorption fractions were also predicted with the classical Langmuir competitive adsorption. Density functional theory (DFT) calculations were conducted, with 3 functionals to explore uncertainties, and up to three adsorbed molecules per Ag active site were investigated. When the DFT energies were passed to the adsorption models, the highest probability adsorption fraction prediction was for ethylene adsorption dominating water adsorption. An exception was that the Heyd-Scuseria-Ernzerhof functional energies passed to the Langmuir model predicted greater water adsorption than ethylene adsorption. The change in adsorption fractions as a function of shifting C2H4 feed gas concentration are reported.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.0c00849