Loading…
Exploring Polymeric Diene–Dienophile Pairs for Thermoreversible Diels–Alder Reactions
The thermoreversible Diels–Alder (DA) reaction provides access to reversible thermosets and thus a pathway to their circular recycling. However, the known thermoreversible diene–dienophile DA pairs are very limited and primarily involve the furan–maleimide pair; hence, there is a need to investigate...
Saved in:
Published in: | Macromolecules 2024-07, Vol.57 (13), p.6024-6034 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The thermoreversible Diels–Alder (DA) reaction provides access to reversible thermosets and thus a pathway to their circular recycling. However, the known thermoreversible diene–dienophile DA pairs are very limited and primarily involve the furan–maleimide pair; hence, there is a need to investigate novel pairs that can provide thermal reversibility in chemical binding at higher and lower temperatures. Hence, a set of 24 diene–dienophile pairs are screened for their tendency to undergo a Diels–Alder (DA) reaction at temperatures up to 140 °C. Of the 21 viable DA pairs, 16 DA pairs then successfully underwent gelation in an analogous polymer cross-linking system. The viability of the thermoreversible retro-Diels–Alder (rDA) reaction at elevated temperatures was then studied via a dissolution study, dynamic scanning calorimetry, and dynamic mechanical analysis. Two novel pairs were shown to undergo rDA degelation for the first time in a polymeric system. [Anthracene-9-methanol + citraconimide] and [anthracene-9-methanol + monomethyl fumarate amide] underwent degelation at 277 and 247 °C, respectively. Several additional novel gels showed dissolution at temperatures up to 250 °C, suggesting that their rDA processes may be accessible, albeit at higher temperatures. The partial self-healing of these two thermoreversible gels at temperatures of 100 and 150 °C, significantly below their degelation temperatures, is also demonstrated. |
---|---|
ISSN: | 0024-9297 1520-5835 |
DOI: | 10.1021/acs.macromol.4c00832 |