Loading…

Metallic Nanoglasses with Promoted β‑Relaxation and Tensile Plasticity

The secondary (β) relaxation is an intrinsic feature of glassy systems and is crucial for the mechanical properties of metallic glasses. However, it remains puzzling what structural features control the β-relaxation fundamentally. Here, we use the recently developed nanoglasses exhibiting well-defin...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2021-07, Vol.21 (14), p.6051-6056
Main Authors: Yang, Qun, Pei, Chao-Qun, Yu, Hai-Bin, Feng, Tao
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The secondary (β) relaxation is an intrinsic feature of glassy systems and is crucial for the mechanical properties of metallic glasses. However, it remains puzzling what structural features control the β-relaxation fundamentally. Here, we use the recently developed nanoglasses exhibiting well-defined structural features at the nanometer scale to interrogate such structure–dynamics relations. We show that an electrodeposited Ni77.5P22.5 nanoglass exhibits promoted β-relaxation and enhanced microscale tensile plasticity over the most rapidly melt-quenched metallic glass with the same composition. Structurally, the β-relaxation is sensitive to the interfacial regions among grains in the nanoglasses. Our results reveal a clear correlation between the amorphous nanostructures and the β-relaxation. It seems that the nanostructuring represents a novel route to obtain high-energy glassy states, that is, the inverse problem of the ultrastable glass.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c01283