Loading…
Metallic Nanoglasses with Promoted β‑Relaxation and Tensile Plasticity
The secondary (β) relaxation is an intrinsic feature of glassy systems and is crucial for the mechanical properties of metallic glasses. However, it remains puzzling what structural features control the β-relaxation fundamentally. Here, we use the recently developed nanoglasses exhibiting well-defin...
Saved in:
Published in: | Nano letters 2021-07, Vol.21 (14), p.6051-6056 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The secondary (β) relaxation is an intrinsic feature of glassy systems and is crucial for the mechanical properties of metallic glasses. However, it remains puzzling what structural features control the β-relaxation fundamentally. Here, we use the recently developed nanoglasses exhibiting well-defined structural features at the nanometer scale to interrogate such structure–dynamics relations. We show that an electrodeposited Ni77.5P22.5 nanoglass exhibits promoted β-relaxation and enhanced microscale tensile plasticity over the most rapidly melt-quenched metallic glass with the same composition. Structurally, the β-relaxation is sensitive to the interfacial regions among grains in the nanoglasses. Our results reveal a clear correlation between the amorphous nanostructures and the β-relaxation. It seems that the nanostructuring represents a novel route to obtain high-energy glassy states, that is, the inverse problem of the ultrastable glass. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c01283 |