Loading…
Chemical and Biochemical Approaches to an Enantiomerically Pure 3,4-Disubstituted Tetrahydrofuran Derivative at a Multikilogram Scale: The Power of KRED
A scalable synthesis of (3S,4S)-4-methyltetrahydrofuran-3-ol involving a keto reductase-mediated enantio- and diastereoselective reduction of a racemic ketone substrate is reported. This chiral intermediate was initially produced using a low-yielding three-step synthesis from ketone, deemed not usab...
Saved in:
Published in: | Organic process research & development 2024-12, Vol.28 (12), p.4467-4476 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A scalable synthesis of (3S,4S)-4-methyltetrahydrofuran-3-ol involving a keto reductase-mediated enantio- and diastereoselective reduction of a racemic ketone substrate is reported. This chiral intermediate was initially produced using a low-yielding three-step synthesis from ketone, deemed not usable for future batches. Looking for a scalable and environmental process: an eco-design approach led to a one-step, highly enantio- and diastereoselective biocatalytic reduction of the ketone to the targeted intermediate (3S,4S)-4-methyltetrahydrofuran-3-ol. In addition, the reaction operates via dynamic kinetic resolution under unprecedented mild conditions of temperature and pH, allowing for a full conversion of the ketone substrate into the desired enantiomer. The new route led to a significant improvement of all the key performance indicators, including PMI, solvent, and waste. |
---|---|
ISSN: | 1083-6160 1520-586X |
DOI: | 10.1021/acs.oprd.4c00388 |