Loading…
Reactions of the Ni(0) Compound Ni(PPh3)4 with Unactivated Alkyl Halides: Oxidative Addition Reactions Involving Radical Processes and Nickel(I) Intermediates
Reactions of the nickel(0) compound NiL4 (L = PPh3) with alkyl halides RX involve initial inner-sphere halogen atom abstraction from the alkyl halides to form alkyl radicals R· and halonickel(I) metalloradical species NiX(PPh3)2,3. The radical pairs then undergo combination within the solvent cage...
Saved in:
Published in: | Organometallics 2018-08, Vol.37 (15), p.2450-2467 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reactions of the nickel(0) compound NiL4 (L = PPh3) with alkyl halides RX involve initial inner-sphere halogen atom abstraction from the alkyl halides to form alkyl radicals R· and halonickel(I) metalloradical species NiX(PPh3)2,3. The radical pairs then undergo combination within the solvent cage to give the square planar nickel(II) compounds NiRX(PPh3)2. Radical intermediacy is demonstrated persuasively by observations that the relative rates vary in the orders tert-butyl > sec-butyl > n-butyl and RI > RBr > RCl, while density functional theory calculations indicate that the radical mechanism provides a lower energy pathway than do alternative, more conventional pathways. The product of the reaction of Ni(PPh3)4 with methyl iodide, NiMeI(PPh3)2, decomposes in solution to ethane and NiI(PPh3)2,3, but when RX = EtI, n-BuI, sec-BuI, tert-BuI, the alkyl-nickel products undergo rapid β-hydrogen elimination to give the hydride NiHI(PPh3)2 plus the corresponding alkene(s). Reactions also occur in which a portion of the alkyl radicals diffuses from the solvent cage and abstracts hydrogen from NiHI(PPh3)2 to form alkanes RH and Ni(I) species NiI(PPh3)2. As a result, NiHI(PPh3)2 is invariably a minor product while the major products are alkanes RH, alkenes R–H, and NiI(PPh3)2. Hydride NiHI(PPh3)2 is found to decompose to H2 and NiI(PPh3)2 but is stable at low temperatures where it exhibits unusual NMR behavior because of exchange involving free PPh3 and the bis- and trisphosphine species, NiHI(PPh3)2 and NiHI(PPh3)3. Present in all of the reactions are paramagnetic, substitution-labile Ni(I) metalloradical species. As a result, resonances of PPh3, ethylene, and the smaller iodoalkenes are generally broad and shifted because of exchange between free and coordinated ligands. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/acs.organomet.8b00244 |