Loading…

Efficient Water Self-Diffusion in Diphenylalanine Peptide Nanotubes

Nanotubes of self-assembled dipeptides exemplified by diphenylalanine (FF) demonstrate a wide range of useful functional properties, such as high Young's moduli, strong photoluminescence, remarkable piezoelectricity and pyroelectricity, optical waveguiding, etc., and became the object of intens...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-06, Vol.12 (24), p.27485-27492
Main Authors: Zelenovskiy, Pavel S, Domingues, Eddy M, Slabov, Vladislav, Kopyl, Svitlana, Ugolkov, Valery L, Figueiredo, Filipe M L, Kholkin, Andrei L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanotubes of self-assembled dipeptides exemplified by diphenylalanine (FF) demonstrate a wide range of useful functional properties, such as high Young's moduli, strong photoluminescence, remarkable piezoelectricity and pyroelectricity, optical waveguiding, etc., and became the object of intensive research due to their ability to combine electronic and biological functions in the same material. Two types of nanoconfined water molecules (bound water directly interacting with the peptide backbone and free water located inside nanochannels) are known to play a key role in the self-assembly of FF. Bound water provides its structural integrity, whereas movable free water influences its functional response. However, the intrinsic mechanism of water motion in FF nanotubes remained elusive. In this work, we study the sorption properties of FF nanotubes directly considering them as a microporous material and analyze the free water self-diffusion at different temperatures. We found a change in the regime of free water diffusion, which is attributed to water cluster size in the nanochannels. Small clusters of less than five molecules per unit cell exhibit ballistic diffusion, whereas, for larger clusters, Fickian diffusion occurs. External conditions of around 40% relative humidity at 30 °C enable the formation of such large clusters, for which the diffusion coefficient reaches 1.3 × 10 m s with an activation energy of 20 kJ mol , which increases to attain 3 × 10 m s at 65 °C. The observed peculiarities of water self-diffusion along the narrow FF nanochannels endow this class of materials with a new functionality. Possible applications of FF nanotubes in nanofluidic devices are discussed.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c03658