Loading…

Enhancing the Electrode Gravimetric Capacity of Li 1.2 Mn 0.4 Ti 0.4 O 2 Cathode Using Interfacial Carbon Deposition and Carbon Nanotube-Mediated Electrical Percolation

Mn-based cation-disordered rocksalt oxides (Mn-DRX) are emerging as promising cathode materials for next-generation Li-ion batteries due to their high specific capacities and cobalt- and nickel-free characteristic. However, to reach the usable capacity, solid-state synthesized Mn-DRX materials requi...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-07, Vol.15 (26), p.31711-31719
Main Authors: Xu, Jianan, Patil, Shripad, Koirala, Krishna Prasad, Chen, Weiyin, Campos-Mata, Astrid, Wang, Chongmin, Roy, Soumyabrata, Nanda, Jagjit, Ajayan, Pulickel M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mn-based cation-disordered rocksalt oxides (Mn-DRX) are emerging as promising cathode materials for next-generation Li-ion batteries due to their high specific capacities and cobalt- and nickel-free characteristic. However, to reach the usable capacity, solid-state synthesized Mn-DRX materials require activation via postsynthetic ball milling, typically incorporating more than 20 wt % conductive carbon that adversely reduces the electrode-level gravimetric capacity. To address this issue, we first deposit amorphous carbon on the surface of the Li Mn Ti O (LMTO) particles to increase the electrical conductivity by 5 orders of magnitude. Although the cathode material gravimetric first charge capacity reaches 180 mAh/g, its highly irreversible behavior leads to a first discharge capacity of 70 mAh/g. Subsequently, to ensure a good electrical percolation network, the LMTO material is ball-milled with a multiwall carbon nanotube (CNT) to obtain a 78.7 wt % LMTO active material loading in the cathode electrode (LMTO-CNT). As a result, a 210 mAh/g cathode electrode gravimetric first charge and 165 mAh/g first discharge capacity values are obtained, compared to the respective capacity values of 222 and 155 mAh/g for the LMTO material ball-milled with 20 wt % SuperP C65 electrode (LMTO-SP). After 50 cycles, LMTO-CNT delivers a 121 mAh/g electrode gravimetric discharge capacity, largely outperforming the value of 44 mAh/g of LMTO-SP. Our study demonstrates that while ball milling is necessary to achieve a significant amount of capacity of LMTO, a careful selection of additives, such as CNT, effectively reduces the required carbon quantity to achieve a higher electrode gravimetric discharge capacity.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.3c04805