Loading…
Role of Liposome Size, Surface Charge, and PEGylation on Rheumatoid Arthritis Targeting Therapy
Rheumatoid arthritis (RA) is a chronic, systemic, progressive autoimmune disease. The vascular permeability of inflamed joints in RA makes it a natural candidate for passive targeting, similar to the enhanced permeability and retention (EPR) effect in solid tumors. Thus, various therapeutic drugs ha...
Saved in:
Published in: | ACS applied materials & interfaces 2019-06, Vol.11 (22), p.20304-20315 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rheumatoid arthritis (RA) is a chronic, systemic, progressive autoimmune disease. The vascular permeability of inflamed joints in RA makes it a natural candidate for passive targeting, similar to the enhanced permeability and retention (EPR) effect in solid tumors. Thus, various therapeutic drugs have been encapsulated in nanocarriers to achieve longer in vivo circulation times and improve RA targeting. Although liposomes are the most widely used nanocarriers for RA treatment, the effects of physical and chemical characteristics of liposomes, such as particle sizes, surface charge, polyethylene glycol (PEG) chain length, and PEG concentration, on their passive RA targeting effect have not been fully elucidated. Here, we systematically investigated the effects of physical and chemical properties of liposomes on circulation time and conducted preliminary studies on their passive targeting mechanisms. A series of liposomes with different particle sizes (70, 100, 200, and 350 nm), surface charges (positive, negative, slight positive, and slight negative), PEG chain lengths (1, 2, and 5 kDa), and concentrations (5, 10, and 20% w/w of total lipid) were prepared by lipid film dispersion and extrusion. The pharmacokinetics of liposomes with different formulas were evaluated with a fluorescence microplate reader. A collagen-induced arthritis (CIA) mouse model was utilized to mimic RA pathological conditions and to evaluate the targeting and efficacy of liposomes with different properties using a near-infrared fluorescence imaging system. Uptake of fluorescent liposomes by various synovial cells was measured by flow cytometry. The results indicated that liposomes with 100 nm diameter, a slight negative charge, and 10% incorporation of 5 kDa PEG had better in vivo circulation time and inflamed joint targeting than did other liposomes. Dexamethasone (Dex) was encapsulated into optimized liposomes as an active ingredient for RA treatment. Pharmacodynamic studies demonstrated that Dex liposomes could significantly improve the antiarthritic efficacy of Dex in a CIA mouse model of RA. This study also found that the retention mechanism of RA was mainly increased because of the uptake of liposomes by fibroblasts and macrophages in inflamed joints. This study provides a persuasive explanation for passive RA targeting by liposomes and advances our ability to treat RA with nanomedicine. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b22693 |