Loading…
High-Throughput Metal Trap: Sulfhydryl-Functionalized Wood Membrane Stacks for Rapid and Highly Efficient Heavy Metal Ion Removal
Heavy metal pollution is a severe problem worldwide. Great efforts have been devoted in developing effective and eco-friendly ways to remove heavy metal ions from contaminated water. However, challenges remain in terms of the high cost, the complex preparation processes required, low efficiency, and...
Saved in:
Published in: | ACS applied materials & interfaces 2020-04, Vol.12 (13), p.15002-15011 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heavy metal pollution is a severe problem worldwide. Great efforts have been devoted in developing effective and eco-friendly ways to remove heavy metal ions from contaminated water. However, challenges remain in terms of the high cost, the complex preparation processes required, low efficiency, and difficulties in scaling-up. Here, we report a sulfhydryl-functionalized wood (SH-wood) membrane featuring three-dimensional mesoporous and low-tortuosity lumens, which serve as multisite metal traps to achieve highly efficient heavy metal ion removal from wastewater. Benefiting from the unique microstructure of wood, the resulting membrane exhibits a high saturation uptake capacity of 169.5, 384.1, 593.9, and 710.0 mg·g–1 for Cu2+, Pb2+, Cd2+, and Hg2+ ions, respectively. Meanwhile, the SH-wood membrane can be easily regenerated at least eight times without apparent performance loss. Furthermore, stacking multilayers of the SH-wood filter is designed. Because of its high yet universal heavy metal ion absorbance capability, the multilayer SH-wood filter can effectively remove diverse heavy metal ions from real contaminated water, meeting the WHO standards while also displaying a high flux rate of 1.3 × 103 L·m–2·h–1. Our work presents a promising strategy for the scalable and highly efficient removal of heavy metal ions from sewage for environmental remediation. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b19734 |