Loading…
Epoxidation and Late-Stage C–H Functionalization by P450 TamI Are Mediated by Variant Heme-Iron Oxidizing Species
P450-catalyzed hydroxylation reactions are well understood mechanistically including the identity of the active oxidizing species. However, the catalytically active heme-iron species in P450 iterative oxidation cascades that involve mechanistically divergent pathways and distinct carbon atoms within...
Saved in:
Published in: | ACS catalysis 2022-03, Vol.12 (6), p.3731-3742 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | P450-catalyzed hydroxylation reactions are well understood mechanistically including the identity of the active oxidizing species. However, the catalytically active heme-iron species in P450 iterative oxidation cascades that involve mechanistically divergent pathways and distinct carbon atoms within a common substrate remains unexplored. Recently, we reported the enzymatic synthesis of trifunctionalized tirandamycin O (9) and O′ (10) using a bacterial P450 TamI variant and developed mechanistic hypotheses to explore their formation. Here, we report the ability of bacterial P450 TamI L295A to shift between different oxidizing species as it catalyzes the sequential epoxidation, hydroxylation, and radical-catalyzed epoxide-opening cascade to create new tirandamycin antibiotics. We also provide evidence that the TamI peroxo-iron species could be a viable catalyst to enable nucleophilic epoxide opening in the absence of iron-oxo compound I. Using site-directed mutagenesis, kinetic solvent isotope effects, artificial oxygen surrogates, end-point assays, and density functional theory (DFT) calculations, we provide new insights into the active oxidant species that P450 TamI employs to introduce its unique pattern of oxidative decorations. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.2c00364 |