Loading…
Selectivity-Switchable Conversion of Cellulose to Glycols over Ni–Sn Catalysts
The direct hydrogenolysis of cellulose represents an attractive and promising route for green polyol production. Designing a catalyst system that could control the selectivity of polyols of this process is highly desirable. In this work, we realized the selectivity-switchable production of ethylene...
Saved in:
Published in: | ACS catalysis 2016-01, Vol.6 (1), p.191-201 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The direct hydrogenolysis of cellulose represents an attractive and promising route for green polyol production. Designing a catalyst system that could control the selectivity of polyols of this process is highly desirable. In this work, we realized the selectivity-switchable production of ethylene glycol (EG) and 1,2-propylene glycol (1,2-PG) by using Sn species with different valences in combination with Ni catalysts. The combination of Ni/AC and metallic Sn powders exhibited a superior activity toward EG (57.6%) with up to 86.6% total polyol yield, while the combination of Ni/AC and SnO favored the formation of 1,2-PG (32.2%) with a 22.9% yield of EG. The Sn species in NiSn alloy in situ formed from metallic Ni and Sn powders was found to be the active sites for the high selectivity of EG as evidenced by control experiments and characterizations including X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy dispersive X-ray mapping, and 119Sn Mössbauer spectroscopy. The effects of Sn loading, reaction temperature, reaction time, and the concentration of cellulose were investigated for Ni/AC + Sn powders. Because of the formation of NiSn alloy, the Ni–Sn catalyst showed good stability during repeated use. Experimental results disclosed that the Sn species with different valence possessed distinct catalytic functions. Both SnO and the alloyed Sn species could catalyze the retro-aldol condensation of glucose to glycolaldehyde, and meanwhile, SnO was also active for the isomerization of glucose to fructose. Therefore, controlling the glycol products distribution could be realized using SnO or the alloyed Sn species as catalysts. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.5b01807 |