Loading…
Hierarchically Coupled Ni:FeOOH Nanosheets on 3D N‑Doped Graphite Foam as Self-Supported Electrocatalysts for Efficient and Durable Water Oxidation
Here, a hierarchical nanostructure composed of Ni-doped α-FeOOH (Ni:FeOOH) nanosheets coupled with N-doped graphite foam (NGF) is demonstrated as a three-dimensional (3D) self-supported electrocatalyst for highly efficient and durable water oxidation. A facile, one-step directional growth of catalyt...
Saved in:
Published in: | ACS catalysis 2019-06, Vol.9 (6), p.5025-5034 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, a hierarchical nanostructure composed of Ni-doped α-FeOOH (Ni:FeOOH) nanosheets coupled with N-doped graphite foam (NGF) is demonstrated as a three-dimensional (3D) self-supported electrocatalyst for highly efficient and durable water oxidation. A facile, one-step directional growth of catalytically active Ni:FeOOH nanosheets on highly conducting 3D NGF results in a fully integrated, hierarchical, nanostructured electrocatalyst with (i) the high intrinsic activity of Ni:FeOOH, (ii) the outstanding electrical conductivity of NGF, and (iii) a well-defined porous structure with an enhanced active surface area. As a result, the self-supported 3D Ni:FeOOH/NGF electrocatalyst exhibits remarkable electrocatalytic activity for the oxygen evolution reaction (OER) in an alkaline solution with an overpotential of 214 mV at 10 mA/cm2, a high stability for over 60 h, a low Tafel slope of 36.2 mV dec–1, and a capability of delivering a high current density of 300 mA/cm2 at an overpotential of 368 mV. In contrast to photodeposition, electrodeposition, and hydrothermal methods for the formation/integration of (oxy)hydroxides, this facile solution strategy for designing an attractive and efficient structure with a highly active metal (oxy)hydroxide and highly conducting NGF provides a pathway to develop other earth-abundant electrocatalysts for a multitude of energy-conversion-device applications. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.9b00492 |