Loading…
High-Mobility Toolkit for Quantum Dot Films
Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of su...
Saved in:
Published in: | ACS photonics 2016-11, Vol.3 (11), p.2059-2067 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683 |
---|---|
cites | cdi_FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683 |
container_end_page | 2067 |
container_issue | 11 |
container_start_page | 2059 |
container_title | ACS photonics |
container_volume | 3 |
creator | Gómez-Campos, Francisco M Rodríguez-Bolívar, Salvador Califano, Marco |
description | Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of such devices is the ability to predict and tune the transport properties of these assemblies. In this work we provide general guidelines to precisely that effect, indicating specific materials, crystal structures, lattice arrangements, surface stoichiometries, and morphologies that favor high electron mobilities in these systems and, conversely, materials that will exhibit low mobilities if nanostructured. At the same time our results evidence a surprising independence of the film’s transport properties from those of the bulk material from which the dots are made, highlighting the crucial role of theoretical modeling to guide device design. |
doi_str_mv | 10.1021/acsphotonics.6b00377 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_6b00377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a446871107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMoWGr_gYe9y9bJ5-4epVorVESo55DExKbubkqSPfTfu6U99ORpBoZn3vdB6B7DHAPBj8qk_Tbk0HuT5kID0Kq6QhNCKZQMCLm-2G_RLKUdAGDgVAg2QQ8r_7Mt34P2rc-HYhNC--tz4UIsPgfV56ErnkMulr7t0h26capNdnaeU_S1fNksVuX64_Vt8bQuFaV1LrUDXXNhiHakamrBuLBC13QM_dZKMYeVMZhYq0ljjMXMNNyJylVUc9eImk4RO_01MaQUrZP76DsVDxKDPDrLS2d5dh4xOGHjVe7CEPux5P_IH8PwXh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Mobility Toolkit for Quantum Dot Films</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gómez-Campos, Francisco M ; Rodríguez-Bolívar, Salvador ; Califano, Marco</creator><creatorcontrib>Gómez-Campos, Francisco M ; Rodríguez-Bolívar, Salvador ; Califano, Marco</creatorcontrib><description>Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of such devices is the ability to predict and tune the transport properties of these assemblies. In this work we provide general guidelines to precisely that effect, indicating specific materials, crystal structures, lattice arrangements, surface stoichiometries, and morphologies that favor high electron mobilities in these systems and, conversely, materials that will exhibit low mobilities if nanostructured. At the same time our results evidence a surprising independence of the film’s transport properties from those of the bulk material from which the dots are made, highlighting the crucial role of theoretical modeling to guide device design.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.6b00377</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2016-11, Vol.3 (11), p.2059-2067</ispartof><rights>Copyright © 2016 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683</citedby><cites>FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gómez-Campos, Francisco M</creatorcontrib><creatorcontrib>Rodríguez-Bolívar, Salvador</creatorcontrib><creatorcontrib>Califano, Marco</creatorcontrib><title>High-Mobility Toolkit for Quantum Dot Films</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of such devices is the ability to predict and tune the transport properties of these assemblies. In this work we provide general guidelines to precisely that effect, indicating specific materials, crystal structures, lattice arrangements, surface stoichiometries, and morphologies that favor high electron mobilities in these systems and, conversely, materials that will exhibit low mobilities if nanostructured. At the same time our results evidence a surprising independence of the film’s transport properties from those of the bulk material from which the dots are made, highlighting the crucial role of theoretical modeling to guide device design.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMoWGr_gYe9y9bJ5-4epVorVESo55DExKbubkqSPfTfu6U99ORpBoZn3vdB6B7DHAPBj8qk_Tbk0HuT5kID0Kq6QhNCKZQMCLm-2G_RLKUdAGDgVAg2QQ8r_7Mt34P2rc-HYhNC--tz4UIsPgfV56ErnkMulr7t0h26capNdnaeU_S1fNksVuX64_Vt8bQuFaV1LrUDXXNhiHakamrBuLBC13QM_dZKMYeVMZhYq0ljjMXMNNyJylVUc9eImk4RO_01MaQUrZP76DsVDxKDPDrLS2d5dh4xOGHjVe7CEPux5P_IH8PwXh0</recordid><startdate>20161116</startdate><enddate>20161116</enddate><creator>Gómez-Campos, Francisco M</creator><creator>Rodríguez-Bolívar, Salvador</creator><creator>Califano, Marco</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161116</creationdate><title>High-Mobility Toolkit for Quantum Dot Films</title><author>Gómez-Campos, Francisco M ; Rodríguez-Bolívar, Salvador ; Califano, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Campos, Francisco M</creatorcontrib><creatorcontrib>Rodríguez-Bolívar, Salvador</creatorcontrib><creatorcontrib>Califano, Marco</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Campos, Francisco M</au><au>Rodríguez-Bolívar, Salvador</au><au>Califano, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Mobility Toolkit for Quantum Dot Films</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2016-11-16</date><risdate>2016</risdate><volume>3</volume><issue>11</issue><spage>2059</spage><epage>2067</epage><pages>2059-2067</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of such devices is the ability to predict and tune the transport properties of these assemblies. In this work we provide general guidelines to precisely that effect, indicating specific materials, crystal structures, lattice arrangements, surface stoichiometries, and morphologies that favor high electron mobilities in these systems and, conversely, materials that will exhibit low mobilities if nanostructured. At the same time our results evidence a surprising independence of the film’s transport properties from those of the bulk material from which the dots are made, highlighting the crucial role of theoretical modeling to guide device design.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.6b00377</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2016-11, Vol.3 (11), p.2059-2067 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsphotonics_6b00377 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | High-Mobility Toolkit for Quantum Dot Films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Mobility%20Toolkit%20for%20Quantum%20Dot%20Films&rft.jtitle=ACS%20photonics&rft.au=Go%CC%81mez-Campos,%20Francisco%20M&rft.date=2016-11-16&rft.volume=3&rft.issue=11&rft.spage=2059&rft.epage=2067&rft.pages=2059-2067&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.6b00377&rft_dat=%3Cacs_cross%3Ea446871107%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a338t-bf0b856c2bf27986456e6b83010dbaa4f1acc12eeb29cce14c95f67f73b5f9683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |