Loading…
Physical Membrane-Stress-Mediated Antimicrobial Properties of Cellulose Nanocrystals
Cellulose nanocrystals (CNCs) have emerged as a sustainable nanomaterial for several environmental applications, including the development of novel antimicrobial agents. Although previous studies have reported antibacterial activity for CNCs, their toxicity mechanism to bacterial cells is still unkn...
Saved in:
Published in: | ACS sustainable chemistry & engineering 2021-03, Vol.9 (8), p.3203-3212 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cellulose nanocrystals (CNCs) have emerged as a sustainable nanomaterial for several environmental applications, including the development of novel antimicrobial agents. Although previous studies have reported antibacterial activity for CNCs, their toxicity mechanism to bacterial cells is still unknown. Here, we investigate the toxicity of CNCs dispersed in water and coated surfaces against Escherichia coli cells. CNC-coated surfaces were able to inactivate approximately 90% of the attached E. coli cells, confirming potential of CNCs to be applied as a sustainable and cost-effective antibiofouling nanomaterial. The toxicity of CNCs in a suspension was concentration-dependent, and an inhibitory concentration (IC50%) of 200 μg/mL was found. Glutathione and 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFA) assays were conducted to evaluate the role of oxidative stress in the CNC toxicity mechanism. Our findings showed that oxidative stress has no significant effect on the antimicrobial activity of CNC. In contrast, scanning electron microscopy (SEM) images and a leakage assay performed with dye-encapsulated phospholipid vesicles indicated that CNCs inactivate bacteria by physically damaging their cell membrane. CNC interaction with dye-encapsulated vesicles resulted in a dye leakage corresponding to 43% of the maximum value, thus confirming that contact-mediated membrane stress is the mechanism governing the toxicity of CNCs to bacteria cells. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.0c08317 |