Loading…
Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action
In view of the cationic amphipathic structure of tachyplesin I and antiparallel beta-sheet as a general DNA binding motif, DNA binding of the antimicrobial peptide has been examined. Several footprinting-like techniques using DNase I protection, dimethyl sulfate protection, and bleomycin- (BLM-) ind...
Saved in:
Published in: | Biochemistry (Easton) 1992-03, Vol.31 (11), p.2998-3004 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In view of the cationic amphipathic structure of tachyplesin I and antiparallel beta-sheet as a general DNA binding motif, DNA binding of the antimicrobial peptide has been examined. Several footprinting-like techniques using DNase I protection, dimethyl sulfate protection, and bleomycin- (BLM-) induced DNA cleavage were applied in this study. Some distinct footprints with DNase I are detected, and also the sequence-specific cleavage mode of the BLM-Fe(II) complex clearly is altered in the presence of tachyplesin I. In addition, methylation of the N-7 residue of guanine situated in the DNA major groove is not entirely inhibited (or activated) by tachyplesin I. The results suggest that tachyplesin I interacts with the minor groove of DNA duplex. Disappearance of the footprints by dithiothreitol-treated tachyplesin I and Ala-tachyplesin strongly suggests a significant contribution of secondary structure containing an antiparallel beta-sheet to the DNA binding of tachyplesin I. This is the first report on DNA interaction with a small peptide which contains a unique antiparallel beta-sheet structure. The mechanism for antimicrobial action of tachyplesin I has also been inferred. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00126a022 |