Loading…

Cl- Channel Inhibitors of the Arylaminobenzoate Type Act as Photosystem II Herbicides:  A Functional and Structural Study

The Cl- channel blocker NPPB (5-nitro-2-(3-phenylpropylamino) benzoic acid) inhibited photosynthetic oxygen evolution of isolated thylakoid membranes in a pH-dependent manner with a K i of about 2 μM at pH 6. Applying different electron acceptors, taking electrons either directly from photosystem II...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2001-03, Vol.40 (11), p.3273-3281
Main Authors: Bock, Arno, Krieger-Liszkay, Anja, Ortiz de Zarate, Igor Beitia, Schönknecht, Gerald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Cl- channel blocker NPPB (5-nitro-2-(3-phenylpropylamino) benzoic acid) inhibited photosynthetic oxygen evolution of isolated thylakoid membranes in a pH-dependent manner with a K i of about 2 μM at pH 6. Applying different electron acceptors, taking electrons either directly from photosystem II (PS II) or photosystem I (PS I), the site of inhibition was localized within PS II. Measurements of fluorescence induction kinetics and thermoluminescence suggest that the binding of NPPB to the QB binding site of PS II is similar to the herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). The effects of different arylaminobenzoate derivatives and other Cl- channel inhibitors on photosynthetic electron transport were investigated. The structure−activity relationship of the inhibitory effect on PS II shows interesting parallels to the one observed for the arylaminobenzoate block of mammalian Cl- channels. A molecular modeling approach was used to fit NPPB into the QB binding site and to identify possible molecular interactions between NPPB and the amino acid residues of the binding site in PS II. Taken together, these data give a detailed molecular picture of the mechanism of NPPB binding.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi002167a