Loading…
Phosphorylation and Regulation of the Na+/H+ Exchanger through Mitogen-Activated Protein Kinase
We examined mitogen-activated protein kinase-mediated phosphorylation and activation of the Na+/H+ exchanger isoform type 1. A rabbit skeletal muscle extract was fractionated by FPLC chromatography. Four main fractions had the ability to phosphorylate the carboxyl-terminal region of NHE1. Western bl...
Saved in:
Published in: | Biochemistry (Easton) 1997-07, Vol.36 (30), p.9151-9158 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examined mitogen-activated protein kinase-mediated phosphorylation and activation of the Na+/H+ exchanger isoform type 1. A rabbit skeletal muscle extract was fractionated by FPLC chromatography. Four main fractions had the ability to phosphorylate the carboxyl-terminal region of NHE1. Western blot analysis and immunoprecipitation showed that three of these were associated with MAP kinase-dependent phosphorylation. Phosphorylation studies using purified MAP kinase showed that the region involved was the carboxyl-terminal 178 amino acids of the protein and that the stoichiometry was 1 phosphate/mol of protein. In-gel kinase assays showed that cytosolic extracts from smooth muscle cells also phosphorylate the carboxyl-terminal of NHE1 and that the MAP kinase-dependent phosphorylation could be activated by PDGF and AngII. Mutant cell lines with an inducible dominant negative MAP kinase showed decreased serum activation of Na+/H+ exchange but normal hypertonic activation of the protein. The results show that MAP kinase is intimately involved in regulation of the Na+/H+ exchanger, possibly through phosphorylation of one amino acid of the carboxyl-terminal cytosolic domain. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi970802f |