Loading…
Hydrogen Bonding Is Not Everything: Extensive Polymorphism in a System with Conserved Hydrogen Bonded Synthons
A simple N,N′-diaryl urea derivative was found to form four different anhydrous crystal forms (I−IV°), which can be crystallized in pure form by several techniques from solution as well as from the melt. These polymorphs were characterized by thermomicroscopy, differential scanning calorimetry, Four...
Saved in:
Published in: | Crystal growth & design 2010-02, Vol.10 (2), p.880-886 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple N,N′-diaryl urea derivative was found to form four different anhydrous crystal forms (I−IV°), which can be crystallized in pure form by several techniques from solution as well as from the melt. These polymorphs were characterized by thermomicroscopy, differential scanning calorimetry, Fourier-transform infrared spectroscopy and single crystal and powder X-ray diffraction. The polymorphs were found to be purely monotropically related with large differences in their heats of fusion (11.1 kJ mol−1 for the least stable form I, 34.5 kJ mol−1 for the most stable form IV°). The crystal structures of all forms show the same conformer for forms I−III and a second conformer in form IV°. However, the hydrogen bonding motifs in all of the polymorphs are the same and thus the compound can be seen as a model for the importance of the entire crystal packing arrangement to the overall energy and stability of the crystal form, as opposed to just a few dominant interactions. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/cg901224f |