Loading…

Ion Conduction in Imidazolium Acrylate Ionic Liquids and their Polymers

Polymerizable imidazolium acrylates and their polymers with pendant imidazolium cations were synthesized with hexafluorophosphate and bis(trifluoromethanesulfonyl)imide counterions and characterized using calorimetry and dielectric spectroscopy. The ionic polymers containing a diethyleneoxy unit as...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2010-11, Vol.22 (21), p.5814-5822
Main Authors: Lee, Minjae, Choi, U Hyeok, Colby, Ralph H, Gibson, Harry W
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymerizable imidazolium acrylates and their polymers with pendant imidazolium cations were synthesized with hexafluorophosphate and bis(trifluoromethanesulfonyl)imide counterions and characterized using calorimetry and dielectric spectroscopy. The ionic polymers containing a diethyleneoxy unit as an N-substituent on the imidazolium cation display higher ionic conductivities than the analogous N-n-butyl polymers. Using a physical model of electrode polarization, we separate the conductivity of single-ion conductors into number density of conducting ions p and their mobility μ. The monomers invariably possess higher conducting ion number density than the polymers, owing to the cation being part of the polymer, but p is insensitive to the N-substituent. In contrast, the diethyleneoxy N-substituent imparts higher mobility than the n-butyl N-substituent, for both monomers and polymers, owing to a lower binding energy between the imidazolium and the counteranions, which is not directly reflected in glass transition temperatures.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm101407d