Loading…

Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine

A detailed study of the aqueous synthesis of composite 50−150 nm magnetite−gold core−shell nanoparticles with the ability to engineer the coverage of gold on the magnetite particle surface is presented. This method utilizes polyethyleneimine for the dual functions of attaching 2 nm gold nanoparticle...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2009-02, Vol.21 (4), p.673-681
Main Authors: Goon, Ian Y, Lai, Leo M. H, Lim, May, Munroe, Paul, Gooding, J. Justin, Amal, Rose
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A detailed study of the aqueous synthesis of composite 50−150 nm magnetite−gold core−shell nanoparticles with the ability to engineer the coverage of gold on the magnetite particle surface is presented. This method utilizes polyethyleneimine for the dual functions of attaching 2 nm gold nanoparticle seeds onto magnetite particles as well as preventing the formation of large aggregates. Saturation of the magnetite surface with gold seeds facilitates the subsequent overlaying of gold to form magnetically responsive core−shell particles, which exhibit surface plasmon resonance. In-depth characterization and quantification of the gold-shell formation process was performed using transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive spectroscopy, and inductively coupled plasma optical emission spectroscopy. Dynamic light scattering studies also showed that PEI coating of synthesized particles served as an excellent barrier against aggregation. The ability of the gold shell to protect the magnetite cores was tested by subjecting the particles to a magnetite-specific dissolution procedure. Elemental analysis of dissolved species revealed that the gold coating of magnetite cores imparts remarkable resistance to iron dissolution. The ability to engineer gold coverage on particle surfaces allows for controlled biofunctionalization, whereas their resistance to dissolution ensures applicability in harsh environments.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm8025329