Loading…

Phenol Deoxygenation Mechanisms on Fe(110) and Pd(111)

The catalytic deoxygenation of phenolic compounds has become a major area of interest in recent years because they are produced during the pyrolysis of lignin and are present in biofuels. Our previous work showed that a PdFe bimetallic catalyst was catalytically active for the deoxygenation of pheno...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2015-02, Vol.5 (2), p.523-536
Main Authors: Hensley, Alyssa J. R, Wang, Yong, McEwen, Jean-Sabin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The catalytic deoxygenation of phenolic compounds has become a major area of interest in recent years because they are produced during the pyrolysis of lignin and are present in biofuels. Our previous work showed that a PdFe bimetallic catalyst was catalytically active for the deoxygenation of phenolics. To better understand and control the catalytic deoxygenation reaction of phenolics, the detailed surface reaction mechanisms are needed for phenol, a key intermediate in phenolic deoxygeantion. Here, we have examined five distinct reaction mechanisms for the deoxygenation of phenol on the Fe(110) and Pd(111) surfaces so as to identify the most likely deoxygenation mechanism on these surfaces. Our results show that the elementary phenol deoxygenation reaction step for each mechanism was highly endothermic on Pd(111), whereas the same mechanisms are exothermic on Fe(110). On the basis of the reaction energy studies, detailed mechanistic studies were performed on the Fe(110) surface, and it was found that the most energetically and kinetically favorable reaction mechanism occurs via the direct cleavage of the C–O bond.
ISSN:2155-5435
2155-5435
DOI:10.1021/cs501403w