Loading…
Synthesis of N-Methyl-2-trichloroacetylpyrrole-A Key Building Block in Peptides That Bind DNA: Micro-, Semimicro-, and Macro-Scale Organic Lab Experiments
The search for more efficient anticancer and antiviral agents has included the preparation and testing of a wide variety of molecules that bind DNA. Of these, particular attention has been devoted to the synthesis of analogues of DNA minor-groove binders such as netropsin and distamycin. These compo...
Saved in:
Published in: | Journal of chemical education 1996-11, Vol.73 (11), p.1036 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The search for more efficient anticancer and antiviral agents has included the preparation and testing of a wide variety of molecules that bind DNA. Of these, particular attention has been devoted to the synthesis of analogues of DNA minor-groove binders such as netropsin and distamycin. These compounds have been shown to exhibit biological activity through their strong interactions with the DNA minor groove, and a relationship between their structure and biological activity has emerged (1). The repeating pyrrole unit contained in these compounds can be prepared from N-methylpyrrole via a noncatalyzed Friedel-Crafts acylation. The reaction has been adapted for use in the undergraduate organic chemistry laboratory on three different scales: microscale, semimicroscale, and macroscale. |
---|---|
ISSN: | 0021-9584 1938-1328 |
DOI: | 10.1021/ed073p1036 |