Loading…

Degradation of Water Soluble Polymers under Combined Ultrasonic and Ultraviolet Radiation

The degradation of water soluble polymers, namely, poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP), by ultraviolet (UV) and ultrasound (US) exposure in the presence of combustion solution synthesized TiO2 (CSN TiO2) was investigated. The time evolution of the...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research 2007-09, Vol.46 (19), p.6204-6210
Main Authors: Aarthi, T, Shaama, M. S, Madras, Giridhar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The degradation of water soluble polymers, namely, poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and poly(vinyl pyrrolidone) (PVP), by ultraviolet (UV) and ultrasound (US) exposure in the presence of combustion solution synthesized TiO2 (CSN TiO2) was investigated. The time evolution of the molecular weight distributions (MWDs) was determined by gel permeation chromatography (GPC). A continuous distribution model based on binary scission was proposed, and the degradation rate coefficient was determined. The degradation of polymers was also investigated with combined simultaneous exposure to UV and US in the presence of CSN TiO2. The model with binary breakage and additive contribution from UV and US fits the experimental values of the number-average molecular weight but not the weight-average molecular weight and thus is not a true representation of the physical process. Therefore, a ternary fragmentation model was developed and used to fit the experimental data successfully. The increase in overall rate of degradation on the combined simultaneous exposure of ultraviolet and ultrasound is due to an increase in the number of scission products per breakage and not due to the increase in the intrinsic rate.
ISSN:0888-5885
1520-5045
DOI:10.1021/ie070287+