Loading…

Measurement of the Phase Behavior of the Ternary System Carbon Dioxide + Acetone + Phenanthrene

As a representative model system for the gas-anti-solvent (GAS) process, the phase behavior of the ternary system carbon dioxide + acetone + phenanthrene has been studied experimentally. Carbon dioxide was chosen as the gaseous anti-solvent, acetone was chosen as the organic solvent, and phenanthren...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical and engineering data 2006-01, Vol.51 (1), p.2-6
Main Authors: Bottini, Susana B, Peters, Cor J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a representative model system for the gas-anti-solvent (GAS) process, the phase behavior of the ternary system carbon dioxide + acetone + phenanthrene has been studied experimentally. Carbon dioxide was chosen as the gaseous anti-solvent, acetone was chosen as the organic solvent, and phenanthrene was chosen as the model solute. In each experiment, a solution of phenanthrene in acetone was expanded using carbon dioxide as the anti-solvent. A synthetic method was used for the measurements of the various phase boundaries. Three-phase equilibrium data solid (phenanthrene)−liquid−vapor were obtained from intersection of two-phase isopleths vapor−liquid and solid−liquid. For a variety of compositions, results are reported for this ternary system within temperature and pressure ranges of (295 to 350) K and (1.0 to12.5) MPa, respectively. As was established in a previous study on the system carbon dioxide + 2-propanol + salicylic acid, it turned out that also in the system carbon dioxide + acetone + phenanthrene the carbon dioxide concentration significantly affects the optimum operational conditions of the GAS process (i.e., at lower concentrations carbon dioxide acts as a co-solvent, while at higher concentrations it acts as an anti-solvent). Also, it is shown that at a certain temperature, it is possible to precipitate most of the dissolved solute within only a small pressure window.
ISSN:0021-9568
1520-5134
DOI:10.1021/je0496239