Loading…
Morphology-Dependent Enhancement of the Pseudocapacitance of Template-Guided Tunable Polyaniline Nanostructures
Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process...
Saved in:
Published in: | Journal of physical chemistry. C 2013-07, Vol.117 (29), p.15009-15019 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%–78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp405300p |