Loading…

Passivation of Copper: Benzotriazole Films on Cu(111)

Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s. However, the molecular level detail of how adsorption and surface passivation occur remains a matter of debate. BTAH adsorption on a Cu(111) single crystal has been investigated from medium coverage to multilayer usi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-04, Vol.118 (16), p.8667-8675
Main Authors: Grillo, Federico, Tee, Daniel W, Francis, Stephen M, Früchtl, Herbert A, Richardson, Neville V
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benzotriazole (BTAH) has been used as a copper corrosion inhibitor since the 1950s. However, the molecular level detail of how adsorption and surface passivation occur remains a matter of debate. BTAH adsorption on a Cu(111) single crystal has been investigated from medium coverage to multilayer using scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), high resolution electron energy loss (HREEL) spectroscopy and supporting density functional theory (DFT) calculations. Both physisorbed and chemisorbed phases are observed. One extended and highly ordered self-assembled metal−organic phase is seen at saturation coverage and above. A metastable phase is also observed. Complete desorption occurs at ca. 600 K. Those structures are critically discussed in the light of some of the various adsorption models reported in the literature and an alternative adsorption model is proposed. These results allow a further understanding of the interaction between benzotriazole and copper and, in turn, may help understanding the mechanism for protection of copper and copper alloys from corrosion, substantially contributing to a long-standing debate.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp411482e