Loading…

Interplay between Oxidized Monovacancy and Nitrogen Doping in Graphene

In most of the N-doped graphene (N-graphene) which attracts strong attention in the context of precious-metal free catalysts and nanoelectronics, the oxygen content is generally higher than or at least comparable to the nitrogen content. In order to understand the effect of oxygen-containing chemica...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-08, Vol.118 (34), p.19795-19805
Main Authors: Hou, Zhufeng, Shu, Da-Jun, Chai, Guo-Liang, Ikeda, Takashi, Terakura, Kiyoyuki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In most of the N-doped graphene (N-graphene) which attracts strong attention in the context of precious-metal free catalysts and nanoelectronics, the oxygen content is generally higher than or at least comparable to the nitrogen content. In order to understand the effect of oxygen-containing chemical groups (O m H n ) on N doping in defective graphene sheets, we perform density functional theory calculations to study the interplay of oxidized monovacancy (MV) and the nitrogen doping, motivated by the fact that MV is more frequently observed and more chemically active than divacancy and Stone–Wales defect. We determine the phase diagrams of undoped and nitrogen-doped oxidized MVs as a function of temperature and partial pressure of O2 and H2 gases. The modification of the electronic structure of MV by oxidation and N doping is studied. Our results show that the ether group (−O– in plane) is a common component in stable configurations of oxidized MVs. Most of the stable configurations of oxidized MVs do not induce any carriers. The stabilization of pyridinic N, pyridinium-like N, and graphitic N at MV depends on the oxidation degree of MV. Our results also suggest that pyridinic N and pyridinium-like N at clean MV do not facilitate the oxygen-reduction reaction.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp504298p