Loading…

Growth and Desorption Kinetics of Ultrathin Zn Layers on Pd(111)

A scanning tunneling microscopy (STM) study, combined with density functional theory (DFT) calculations and thermal desorption spectroscopy (TDS) data, on the growth and structure of Zn on a Pd(111) surface is presented. The STM results demonstrate that PdZn(111) surface alloy bilayer islands with a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2009-06, Vol.113 (22), p.9788-9796
Main Authors: Weirum, G, Kratzer, M, Koch, H. P, Tamtögl, A, Killmann, J, Bako, I, Winkler, A, Surnev, S, Netzer, F. P, Schennach, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A scanning tunneling microscopy (STM) study, combined with density functional theory (DFT) calculations and thermal desorption spectroscopy (TDS) data, on the growth and structure of Zn on a Pd(111) surface is presented. The STM results demonstrate that PdZn(111) surface alloy bilayer islands with a p(2 × 1) structure already form during the room temperature deposition of submonolayer amounts of Zn on Pd(111). DFT calculations predict that the PdZn bilayers are energetically more stable than single PdZn layers and establish their structural parameters. The TDS data show that Zn desorbs below 600 K in a multiple-peak desorption structure with fractional order desorption kinetics of the individual components, which is due to multilayer Zn desorption. The experimentally derived adsorption energies of the low temperature desorption peaks are reproduced in the DFT calculations. At temperatures above 750 K, Zn desorbs from the PdZn alloy, and the desorption kinetics is a mixture of a first-order and a diffusion-limited desorption process.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp9017376