Loading…

Compatibilizers for Melt Blending:  Premade Block Copolymers

Poly(methyl methacrylate) (PMMA) was melt mixed 30:70 into polystyrene (PS) with and without symmetric P(S-b-MMA) diblock copolymers. The molecular weight of the components was varied. After 5 min of shear mixing, the PMMA was dispersed into roughly spherical, submicron particles. Particle size was...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules 1996-08, Vol.29 (17), p.5590-5598
Main Authors: Macosko, C. W, Guégan, Philippe, Khandpur, Ashish K, Nakayama, Akinari, Marechal, Philippe, Inoue, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(methyl methacrylate) (PMMA) was melt mixed 30:70 into polystyrene (PS) with and without symmetric P(S-b-MMA) diblock copolymers. The molecular weight of the components was varied. After 5 min of shear mixing, the PMMA was dispersed into roughly spherical, submicron particles. Particle size was measured by light scattering and transmission electron microscopy. As little as 1% copolymer led to a significant reduction in PMMA particle size, although larger amounts were needed to make the particles stable to annealing (180 °C for 15 min). The principle role of block copolymers in controlling morphology appears to be in preventing coalescence. Preventing dynamic coalescence leads to size reduction, while preventing static coalescence results in stability or compatibilization. We estimate that less than 5% of the interface needs to be covered to prevent dynamic coalescence while ∼20% is necessary to impart static stability. Mobility, critical micelle concentration, and molecular weight of the block copolymer also appear to be important. Lowering the molecular weight of the PMMA phase from 43 000 to 11 000 resulted in dramatically lower particle size (700 vs 60 nm). These variables are discussed in terms of a qualitative balance between rate of diffusion and rate of area generation during blending.
ISSN:0024-9297
1520-5835
DOI:10.1021/ma9602482